3.293 \(\int \frac {1}{x^{3/2} (a+b x^2)} \, dx\)

Optimal. Leaf size=202 \[ -\frac {\sqrt [4]{b} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} a^{5/4}}+\frac {\sqrt [4]{b} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} a^{5/4}}+\frac {\sqrt [4]{b} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{5/4}}-\frac {\sqrt [4]{b} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} a^{5/4}}-\frac {2}{a \sqrt {x}} \]

[Out]

1/2*b^(1/4)*arctan(1-b^(1/4)*2^(1/2)*x^(1/2)/a^(1/4))/a^(5/4)*2^(1/2)-1/2*b^(1/4)*arctan(1+b^(1/4)*2^(1/2)*x^(
1/2)/a^(1/4))/a^(5/4)*2^(1/2)-1/4*b^(1/4)*ln(a^(1/2)+x*b^(1/2)-a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/a^(5/4)*2^(1/2
)+1/4*b^(1/4)*ln(a^(1/2)+x*b^(1/2)+a^(1/4)*b^(1/4)*2^(1/2)*x^(1/2))/a^(5/4)*2^(1/2)-2/a/x^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.17, antiderivative size = 202, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 8, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.533, Rules used = {325, 329, 297, 1162, 617, 204, 1165, 628} \[ -\frac {\sqrt [4]{b} \log \left (-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} a^{5/4}}+\frac {\sqrt [4]{b} \log \left (\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {a}+\sqrt {b} x\right )}{2 \sqrt {2} a^{5/4}}+\frac {\sqrt [4]{b} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{5/4}}-\frac {\sqrt [4]{b} \tan ^{-1}\left (\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}+1\right )}{\sqrt {2} a^{5/4}}-\frac {2}{a \sqrt {x}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^(3/2)*(a + b*x^2)),x]

[Out]

-2/(a*Sqrt[x]) + (b^(1/4)*ArcTan[1 - (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(5/4)) - (b^(1/4)*ArcTan[1
 + (Sqrt[2]*b^(1/4)*Sqrt[x])/a^(1/4)])/(Sqrt[2]*a^(5/4)) - (b^(1/4)*Log[Sqrt[a] - Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt
[x] + Sqrt[b]*x])/(2*Sqrt[2]*a^(5/4)) + (b^(1/4)*Log[Sqrt[a] + Sqrt[2]*a^(1/4)*b^(1/4)*Sqrt[x] + Sqrt[b]*x])/(
2*Sqrt[2]*a^(5/4))

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rubi steps

\begin {align*} \int \frac {1}{x^{3/2} \left (a+b x^2\right )} \, dx &=-\frac {2}{a \sqrt {x}}-\frac {b \int \frac {\sqrt {x}}{a+b x^2} \, dx}{a}\\ &=-\frac {2}{a \sqrt {x}}-\frac {(2 b) \operatorname {Subst}\left (\int \frac {x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{a}\\ &=-\frac {2}{a \sqrt {x}}+\frac {\sqrt {b} \operatorname {Subst}\left (\int \frac {\sqrt {a}-\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{a}-\frac {\sqrt {b} \operatorname {Subst}\left (\int \frac {\sqrt {a}+\sqrt {b} x^2}{a+b x^4} \, dx,x,\sqrt {x}\right )}{a}\\ &=-\frac {2}{a \sqrt {x}}-\frac {\operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{2 a}-\frac {\operatorname {Subst}\left (\int \frac {1}{\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}+x^2} \, dx,x,\sqrt {x}\right )}{2 a}-\frac {\sqrt [4]{b} \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}+2 x}{-\frac {\sqrt {a}}{\sqrt {b}}-\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} a^{5/4}}-\frac {\sqrt [4]{b} \operatorname {Subst}\left (\int \frac {\frac {\sqrt {2} \sqrt [4]{a}}{\sqrt [4]{b}}-2 x}{-\frac {\sqrt {a}}{\sqrt {b}}+\frac {\sqrt {2} \sqrt [4]{a} x}{\sqrt [4]{b}}-x^2} \, dx,x,\sqrt {x}\right )}{2 \sqrt {2} a^{5/4}}\\ &=-\frac {2}{a \sqrt {x}}-\frac {\sqrt [4]{b} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} a^{5/4}}+\frac {\sqrt [4]{b} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} a^{5/4}}-\frac {\sqrt [4]{b} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{5/4}}+\frac {\sqrt [4]{b} \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{5/4}}\\ &=-\frac {2}{a \sqrt {x}}+\frac {\sqrt [4]{b} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{5/4}}-\frac {\sqrt [4]{b} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt [4]{b} \sqrt {x}}{\sqrt [4]{a}}\right )}{\sqrt {2} a^{5/4}}-\frac {\sqrt [4]{b} \log \left (\sqrt {a}-\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} a^{5/4}}+\frac {\sqrt [4]{b} \log \left (\sqrt {a}+\sqrt {2} \sqrt [4]{a} \sqrt [4]{b} \sqrt {x}+\sqrt {b} x\right )}{2 \sqrt {2} a^{5/4}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 27, normalized size = 0.13 \[ -\frac {2 \, _2F_1\left (-\frac {1}{4},1;\frac {3}{4};-\frac {b x^2}{a}\right )}{a \sqrt {x}} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^(3/2)*(a + b*x^2)),x]

[Out]

(-2*Hypergeometric2F1[-1/4, 1, 3/4, -((b*x^2)/a)])/(a*Sqrt[x])

________________________________________________________________________________________

fricas [A]  time = 0.85, size = 142, normalized size = 0.70 \[ \frac {4 \, a x \left (-\frac {b}{a^{5}}\right )^{\frac {1}{4}} \arctan \left (-\frac {a b \sqrt {x} \left (-\frac {b}{a^{5}}\right )^{\frac {1}{4}} - \sqrt {-a^{3} b \sqrt {-\frac {b}{a^{5}}} + b^{2} x} a \left (-\frac {b}{a^{5}}\right )^{\frac {1}{4}}}{b}\right ) - a x \left (-\frac {b}{a^{5}}\right )^{\frac {1}{4}} \log \left (a^{4} \left (-\frac {b}{a^{5}}\right )^{\frac {3}{4}} + b \sqrt {x}\right ) + a x \left (-\frac {b}{a^{5}}\right )^{\frac {1}{4}} \log \left (-a^{4} \left (-\frac {b}{a^{5}}\right )^{\frac {3}{4}} + b \sqrt {x}\right ) - 4 \, \sqrt {x}}{2 \, a x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(3/2)/(b*x^2+a),x, algorithm="fricas")

[Out]

1/2*(4*a*x*(-b/a^5)^(1/4)*arctan(-(a*b*sqrt(x)*(-b/a^5)^(1/4) - sqrt(-a^3*b*sqrt(-b/a^5) + b^2*x)*a*(-b/a^5)^(
1/4))/b) - a*x*(-b/a^5)^(1/4)*log(a^4*(-b/a^5)^(3/4) + b*sqrt(x)) + a*x*(-b/a^5)^(1/4)*log(-a^4*(-b/a^5)^(3/4)
 + b*sqrt(x)) - 4*sqrt(x))/(a*x)

________________________________________________________________________________________

giac [A]  time = 0.62, size = 190, normalized size = 0.94 \[ -\frac {2}{a \sqrt {x}} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} + 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a^{2} b^{2}} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \left (\frac {a}{b}\right )^{\frac {1}{4}} - 2 \, \sqrt {x}\right )}}{2 \, \left (\frac {a}{b}\right )^{\frac {1}{4}}}\right )}{2 \, a^{2} b^{2}} + \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a^{2} b^{2}} - \frac {\sqrt {2} \left (a b^{3}\right )^{\frac {3}{4}} \log \left (-\sqrt {2} \sqrt {x} \left (\frac {a}{b}\right )^{\frac {1}{4}} + x + \sqrt {\frac {a}{b}}\right )}{4 \, a^{2} b^{2}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(3/2)/(b*x^2+a),x, algorithm="giac")

[Out]

-2/(a*sqrt(x)) - 1/2*sqrt(2)*(a*b^3)^(3/4)*arctan(1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) + 2*sqrt(x))/(a/b)^(1/4))/(
a^2*b^2) - 1/2*sqrt(2)*(a*b^3)^(3/4)*arctan(-1/2*sqrt(2)*(sqrt(2)*(a/b)^(1/4) - 2*sqrt(x))/(a/b)^(1/4))/(a^2*b
^2) + 1/4*sqrt(2)*(a*b^3)^(3/4)*log(sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^2*b^2) - 1/4*sqrt(2)*(a*b^
3)^(3/4)*log(-sqrt(2)*sqrt(x)*(a/b)^(1/4) + x + sqrt(a/b))/(a^2*b^2)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 140, normalized size = 0.69 \[ -\frac {\sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}-1\right )}{2 \left (\frac {a}{b}\right )^{\frac {1}{4}} a}-\frac {\sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {x}}{\left (\frac {a}{b}\right )^{\frac {1}{4}}}+1\right )}{2 \left (\frac {a}{b}\right )^{\frac {1}{4}} a}-\frac {\sqrt {2}\, \ln \left (\frac {x -\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {a}{b}}}{x +\left (\frac {a}{b}\right )^{\frac {1}{4}} \sqrt {2}\, \sqrt {x}+\sqrt {\frac {a}{b}}}\right )}{4 \left (\frac {a}{b}\right )^{\frac {1}{4}} a}-\frac {2}{a \sqrt {x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^(3/2)/(b*x^2+a),x)

[Out]

-2/a/x^(1/2)-1/4/a/(a/b)^(1/4)*2^(1/2)*ln((x-(a/b)^(1/4)*2^(1/2)*x^(1/2)+(a/b)^(1/2))/(x+(a/b)^(1/4)*2^(1/2)*x
^(1/2)+(a/b)^(1/2)))-1/2/a/(a/b)^(1/4)*2^(1/2)*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)+1)-1/2/a/(a/b)^(1/4)*2^(1/2)
*arctan(2^(1/2)/(a/b)^(1/4)*x^(1/2)-1)

________________________________________________________________________________________

maxima [A]  time = 3.04, size = 186, normalized size = 0.92 \[ -\frac {b {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} + 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} - 2 \, \sqrt {b} \sqrt {x}\right )}}{2 \, \sqrt {\sqrt {a} \sqrt {b}}}\right )}{\sqrt {\sqrt {a} \sqrt {b}} \sqrt {b}} - \frac {\sqrt {2} \log \left (\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}} + \frac {\sqrt {2} \log \left (-\sqrt {2} a^{\frac {1}{4}} b^{\frac {1}{4}} \sqrt {x} + \sqrt {b} x + \sqrt {a}\right )}{a^{\frac {1}{4}} b^{\frac {3}{4}}}\right )}}{4 \, a} - \frac {2}{a \sqrt {x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^(3/2)/(b*x^2+a),x, algorithm="maxima")

[Out]

-1/4*b*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) + 2*sqrt(b)*sqrt(x))/sqrt(sqrt(a)*sqrt(b)))/(sqr
t(sqrt(a)*sqrt(b))*sqrt(b)) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*a^(1/4)*b^(1/4) - 2*sqrt(b)*sqrt(x))/sqrt
(sqrt(a)*sqrt(b)))/(sqrt(sqrt(a)*sqrt(b))*sqrt(b)) - sqrt(2)*log(sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x +
 sqrt(a))/(a^(1/4)*b^(3/4)) + sqrt(2)*log(-sqrt(2)*a^(1/4)*b^(1/4)*sqrt(x) + sqrt(b)*x + sqrt(a))/(a^(1/4)*b^(
3/4)))/a - 2/(a*sqrt(x))

________________________________________________________________________________________

mupad [B]  time = 4.50, size = 54, normalized size = 0.27 \[ \frac {{\left (-b\right )}^{1/4}\,\mathrm {atanh}\left (\frac {{\left (-b\right )}^{1/4}\,\sqrt {x}}{a^{1/4}}\right )}{a^{5/4}}-\frac {{\left (-b\right )}^{1/4}\,\mathrm {atan}\left (\frac {{\left (-b\right )}^{1/4}\,\sqrt {x}}{a^{1/4}}\right )}{a^{5/4}}-\frac {2}{a\,\sqrt {x}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x^(3/2)*(a + b*x^2)),x)

[Out]

((-b)^(1/4)*atanh(((-b)^(1/4)*x^(1/2))/a^(1/4)))/a^(5/4) - ((-b)^(1/4)*atan(((-b)^(1/4)*x^(1/2))/a^(1/4)))/a^(
5/4) - 2/(a*x^(1/2))

________________________________________________________________________________________

sympy [A]  time = 12.16, size = 170, normalized size = 0.84 \[ \begin {cases} \frac {\tilde {\infty }}{x^{\frac {5}{2}}} & \text {for}\: a = 0 \wedge b = 0 \\- \frac {2}{5 b x^{\frac {5}{2}}} & \text {for}\: a = 0 \\- \frac {2}{a \sqrt {x}} & \text {for}\: b = 0 \\- \frac {2}{a \sqrt {x}} + \frac {\left (-1\right )^{\frac {3}{4}} \log {\left (- \sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac {1}{b}} + \sqrt {x} \right )}}{2 a^{\frac {5}{4}} \sqrt [4]{\frac {1}{b}}} - \frac {\left (-1\right )^{\frac {3}{4}} \log {\left (\sqrt [4]{-1} \sqrt [4]{a} \sqrt [4]{\frac {1}{b}} + \sqrt {x} \right )}}{2 a^{\frac {5}{4}} \sqrt [4]{\frac {1}{b}}} - \frac {\left (-1\right )^{\frac {3}{4}} \operatorname {atan}{\left (\frac {\left (-1\right )^{\frac {3}{4}} \sqrt {x}}{\sqrt [4]{a} \sqrt [4]{\frac {1}{b}}} \right )}}{a^{\frac {5}{4}} \sqrt [4]{\frac {1}{b}}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**(3/2)/(b*x**2+a),x)

[Out]

Piecewise((zoo/x**(5/2), Eq(a, 0) & Eq(b, 0)), (-2/(5*b*x**(5/2)), Eq(a, 0)), (-2/(a*sqrt(x)), Eq(b, 0)), (-2/
(a*sqrt(x)) + (-1)**(3/4)*log(-(-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*a**(5/4)*(1/b)**(1/4)) - (-1)**
(3/4)*log((-1)**(1/4)*a**(1/4)*(1/b)**(1/4) + sqrt(x))/(2*a**(5/4)*(1/b)**(1/4)) - (-1)**(3/4)*atan((-1)**(3/4
)*sqrt(x)/(a**(1/4)*(1/b)**(1/4)))/(a**(5/4)*(1/b)**(1/4)), True))

________________________________________________________________________________________